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Abstract

We give a reduction procedure to determine (locally) the surfaces with constant Gauss curvature
in a three-dimensional manifold which are invariant under the action of a one-parameter subgroup of
the isometry group of the ambient space. We apply this procedure to describe the invariant surfaces
with constant Gauss curvature inH2 × R and inH3.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Let (N3, g) be a three-dimensional Riemannian manifold and letX be a Killing vector
field onN. ThenX generates a one-parameter subgroupGX of the group of isometries of
(N3, g). Forx ∈ N, the isotropy subgroupGx of G is compact and the quotient spaceGX/Gx
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is diffeomorphic to the orbitG(x) = {gx ∈ N : g ∈ G}. An orbitG(x) is called principal
if there exists an open neighbourhoodU ⊂ N of x such that for all orbitsG(y), y ∈ U,
the isotropy subgroupsGy are conjugate. IfN/G is connected, from the Principal Orbit
Theorem[6], the principal orbits are all diffeomorphic and the setNr, consisting of points
belonging to principal orbits, is open and dense inN. Moreover, the quotient spaceNr/GX is
a connected differentiable manifold and the quotient mapπ : Nr → Nr/GX is a submersion.

Let nowf : M2 → (N3, g) be an immersion from a surfaceM2 into N3 and assume
thatf (M) ⊂ Nr. We say thatf is aGX-equivariantimmersion, andf (M) aGX-invariant
surface ofN, if there exists an action ofGX onM2 such that for anyx ∈ M2 andg ∈ GX
we havef (gx) = gf (x).

A GX-equivariant immersionf : M2 → (N3, g) induces onM2 a Riemannian metric,
the pull-back metric, denoted bygf and called theGX-invariant induced metric.

The aim of this paper is to give a local description of theGX-equivariant immersions
from a surface into a 3-manifold that induce onM2 a metric of constant Gauss curvature.

2. Equivariant geometry of invariant surfaces

Let f : M2 → (N3, g) be aGX-equivariant immersion from a surfaceM2 into a Rie-
mannian manifold (N3, g) and let endowM2 with theGX-invariant induced metricgf .
Assume thatf (M2) ⊂ Nr and thatN/GX is connected. Thenf induces an immersion
f̃ : M/GX → Nr/GX between the orbit spaces and the spaceNr/GX can be equipped
with a Riemannian metric, thequotient metric, so that the quotient mapπ : Nr → Nr/GX
is a Riemannian submersion.

Following [3] we shall describe the quotient metric of the regular part of the orbit space
N/GX. It is well known (see, for example[4]) thatNr/GX can be locally parametrized
by the invariant functions of the Killing vector fieldX. If {f1, f2} is a complete set of
invariant functions on aGX-invariant subset ofNr, then the quotient metric is given by
g̃ =∑2

i,j=1 h
ij dfi ⊗ dfj where (hij) is the inverse of the matrix (hij) with entrieshij =

g(∇fi,∇fj).
We can picture the above construction by the following diagram:

whereπ is a Riemannian submersion.
We now give a local description of theGX-invariant surfaces ofN3. Let γ̃ : (a, b) ⊂

R→ (N3
r /GX, g̃) be a curve parametrized by arc length and letγ : (a, b) ⊂ R→ N3 be a

lift of γ̃, such that dπ(γ ′) = γ̃ ′. If we denote byφr, r ∈ (−ε, ε), the local flow of the Killing
vector fieldX, then the map

ψ : (a, b) × (−ε, ε) → N3, ψ(t, r) = φr(γ(t)), (1)

defines a parametrizedGX-invariant surface.
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Conversely, iff (M2) is aGX-invariant immersed surface inN3, thenf̃ defines a curve
in (N3

r /GX, g̃) that can be locally parametrized by arc length. The curveγ̃ is generally
called theprofilecurve.

In the sequel we need the following theorem.

Theorem 2.1 (Caddeo et al.[2]). Let g = E dt2 + 2F dt dr +Gdr2 be a Riemannian
metric on a local chart(t, r) of a surfaceM2 with coefficients E, F and G that depend only
on t.

(i) If (M2, g) has constant Gauss curvature, then there exists a constantA ∈ R such that

(dG/dt)2

EG− F2 + 4KG = A. (2)

(ii) Vice versa, suppose thatEq.(2) holds with K and A real constants. Then, in all points
whereG′ �= 0, the surfaceM2 has constant Gauss curvature equal to K.

We are now ready to state the main result.

Theorem 2.2. Letf : M2 → (N3
r , g) be aGX-equivariant immersion, γ̃ : (a, b) ⊂ R→

(N3
r /GX, g̃) a parametrization by arc length of̃f andγ a lift of γ̃.

(i) If theGX-invariant induced metricgf is of constant Gaussian curvature K, then the
functionω(t) = ‖X(γ(t))‖g satisfies the following differential equation:

d2

dt2
ω(t) +Kω(t) = 0. (3)

(ii) Vice versa, suppose thatEq.(3) holds with K a realconstant. Then, in all points where
d(ω2)/dt �= 0, theGX-invariant induced metricgf has constant Gauss curvature.

Proof. Locally the surfacef (M2) can be parametrized, using(1), by ψ(t, r) = φr(γ(t)).
Thus the pull-back metric can be written asgf = E dt2 + 2F dt dr +Gdr2 where

E = g(ψt, ψt) = g(dφ(γ ′), dφ(γ ′)), F = g(ψt, ψr) = g(dφ(γ ′), X),

G = g(ψr,ψr) = g(X,X) = ω2.

Since ther-coordinate curves are the orbits of the action of the one-parameter group of
isometriesGX, the coefficients of the metric do not depend onr.

Now, assume that (M2, gf ) has constant Gauss curvatureK, then, fromTheorem 2.1,
there exists a constantA ∈ R such that

(dG/dt)2

EG− F2 + 4KG = A. (4)

Sinceγ is the lift of γ̃ with respect to the Riemannian submersionπ, we have that
dπ(ψt) = γ̃ ′ and dπ(ψr) = 0. Let e be a local unit vector field tangent to the surface and
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horizontal with respect toπ. Then, since dπ(ψt) = γ̃ ′ has norm 1 andπ is a Riemannian
submersion,ψt can be decomposed as

ψt = g(ψt, ψr)
ψr

g(ψr,ψr)
+ e = F

G
ψr + e.

Calculating the norm yields to

EG− F2 = G.

Then Eq.(4) can be rewritten as

(
dG

dt

)2

+ 4KG2 = AG,

which is equivalent, taking into account thatG = ω2, to

d2

dt2
ω(t) +Kω(t) = 0.

Conversely, assume that along a curveγ the functionω(t) = ‖X(γ(t))‖g satisfies the
differential equation:

d2

dt2
ω(t) +Kω(t) = 0,

for some real constantK. Then there exist a constantA such that the functionG = ω2

satisfies the differential equation:

(
dG

dt

)2

+ 4KG2 = AG

and, fromTheorem 2.1, in all points where dG/dt �= 0, the parametrizationψ(t, r) defines
a parametrized surface with constant Gauss curvatureK. �

By integration of Eq.(3) we have the following corollary.

Corollary 2.3. Let f : M2 → (N3, g) be aGX-equivariant immersion which induces a
GX-invariant metricgf onM2 of constant Gauss curvature K. Then the normω(t) of the
Killing vector field X along a lift of the profile curve is:

• for K = 0 given by

ω(t) = c1t + c2, c1, c2 ∈ R;
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• for K = 1/R2 > 0 given by

ω(t) = c1 cos
( t
R

)
+ c2 sin

( t
R

)
, c1, c2 ∈ R;

• for K = −1/R2 < 0 given by

ω(t) = c1 cosh
( t
R

)
+ c2 sinh

( t
R

)
, c1, c2 ∈ R.

As we shall show in the next section the profile curve of aGX-invariant surface can
be parametrized as a function ofω. Thus, usingCorollary 2.3, we can give the explicit
parametrization of the profile curve.

Remark 2.4. If (N3, g) = (R3, can) is the Euclidean three-dimensional space, then the
Killing vector fields generate either translations or rotations. In the case of translations
the quotient spaceR3/GX is R2 with the flat metric andω is constant. Thus, from Eq.
(3), we see that any curve in the quotient space generates a flat right cylinder. In the case
of rotations we can assume, without loss of generality, that the rotation is about a co-
ordinate axis, sayx3. Then the Killing vector field isX = −x2(∂/∂x1) + x1(∂/∂x2) and
the quotient space isR3/GX = {(x1, x2, x3) ∈ R3 : x2 = 0, x1 ≥ 0} with the flat metric. If
γ̃(t) = (u(t),0, v(t)) ∈ R3/GX is a arc length parametrized profile of aGX-invariant sur-
face, then the norm ofX restricted to the profile curve isω = u(t) and, usingCorollary 2.3,
we find the classical explicit parametrization of surfaces of revolution with constant Gauss
curvature (see, for example[1]).

3. Invariant surfaces inH2 × R

In this section we useTheorem 2.2to describe (locally) allG-invariant surfaces with
constant Gauss curvature of the productH2 × R whereG is a one-parameter subgroup of
the isometries. LetH2 = {(x, y) ∈ R2 : y > 0} be the half plane model of the hyperbolic
plane and considerH2 × R endowed with the product metric

ds2 = dx2 + dy2

y2 + dz2.

Proposition 3.1. The Lie algebra of the infinitesimal isometries of the product(H2 ×
R, ds2) admits the following bases of Killing vector fields:

X1 = x2 − y2

2

∂

∂x
+ xy

∂

∂y
, X2 = ∂

∂x
, X3 = x

∂

∂x
+ y

∂

∂y
, X4 = ∂

∂z
.

Proof. This result comes from a direct integration of the Killing equationLXg = 0. �
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Let denote byGi the one-parameter subgroup of isometries generated byXi, byGij the
one-parameter subgroup of isometries generated by linear combinations ofXi andXj and
so on. We first note that if the groupsGX andGY generated by two Killing vector fieldsX
andY are conjugate (we shall writeGX ∼ GY ) then the respectively invariant surfaces are
congruent, i.e. isometric with respect to an isometry of the ambient space. Therefore, we
can reduce the study of the invariant surfaces by analyzing all the conjugate one-parameter
groups of isometries. In[5] there is the complete list of the conjugate groups of isometries
in H2 × R which gives the following lemma.

Lemma 3.2 (Onnis[5]). Any surface inH2 × R which is invariant under the action of a
one-parameter subgroup of isometriesGX,generated by a Killing vector fieldX =∑i aiXi,
is isometric to a surface invariant under the action of one of the following groups:

G24, G34, G∗
12, G∗

124,

whereG∗
12 is the one-parameter group generated byX∗

12 = X1 + (X2)/2 andG∗
124 is the

one-parameter group generated byX∗
12 andX4.

Now let G be a one-parameter group of isometries among those described inLemma
3.2 and letγ̃ = (u(s), v(s)) be a curve parametrized by arc length in the orbit spaceB =
(H2 × R)/G endowed with the quotient metric ˜g, that is such that

g̃(γ̃ ′, γ̃ ′) = g̃11u
′2 + 2g̃12u

′v′ + g̃22u
′2 = 1,

where with′ we have denoted the derivative with respect tos.
If we denote byω the norm of the Killing vector fieldX that generates the one-parameter

group of isometriesG, we can give the following local description of theG-invariant surfaces
of H2 × R.

Theorem 3.3. Let γ̃ = (u(s), v(s)) be a curve in the orbit space(H2 × R/G, g̃)
parametrized by arc length, which is the profile curve of a G-invariant surface in(H2 × R).
Then:

• If G = G4, the orbit space isH2 and any curve parametrized by arc length is the profile
curve of a flatG4-invariant cylinder.

• If G = G24, the orbit space isB = {(u, v) ∈ R2 : u > 0} with the orbital metricg̃ =
(du2/u2) + (dv2/(a2 + b2u2)) and the profile curve can be parametrized by

u(s) = |a|/
√
ω2 − b2, a, b ∈ R,

v(s) =
∫ s

s0

√√√√ a2ω2

ω2 − b2

[
1 −

(
ωω′

ω2 − b2

)2
]

dt.

As a special case, whena = 1 andb = 0, we have theG2-invariant surfaces.
• IfG = G34, then the orbit space isB = {(u, v) ∈ R2 : 0< u < π} with the orbital metric
g̃ = (du2/ sin2(u)) + (dv2/(a2 + b2 sin2(u))) and the profile curve can be parametrized
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by

u(s) = arcsin
(
|a|/
√
ω2 − b2

)
, a, b ∈ R,

v(s) =
∫ s

s0

√
a2ω2

ω2 − b2

[
1 − (ωω′)2

(ω2 − b2)(ω2 − a2 − b2)

]
dt.

As a special case, whena = 1 andb = 0, we have theG3-invariant surfaces.
• If G = G∗

124, then the orbit space isB = {(u, v) ∈ R2 : u ≥ 2} with the orbital metric
g̃ = (du2/(u2 − 4)) + [(u2 − 4) dv2/((u2 + 4(a2 − 1)))] and the profile curve can be
parametrized by

u(s) = 2
√
ω2 + 1 − a2, a ∈ R,

v(s) =
∫ s

s0

√
ω2

ω2 − a2

[
1 − (ωω′)2

(ω2 − a2)(ω2 + 1 − a2)

]
dt.

As a special case, whena = 0, we have theG∗
12-invariant surfaces.

Proof. The proof is a direct consequence of the expression of the quotient metric and of
ω. We shall write down the explicit calculations for theG24-invariant surfaces leaving the
other cases to the reader.

The Killing vector field generating the Lie algebra ofG24 is X = a(∂/∂x) +
b(∂/∂z), a, b ∈ R. A set of two invariant functions is

u = y > 0, v = bx− az.

Thus the orbit space isB = {(u, v) ∈ R2 : u > 0} and the orbital metric is

g̃ = du2

u2 + dv2

a2 + b2u2 .

Let γ̃ = (u(s), v(s)) be a curve parametrized by arc length in the orbit spaceB. Then the
square of the norm of the Killing vector filedX along a lift of γ̃, with respect tog, is

ω2 = ‖X‖2
g = (a2 + b2u2)/u2. (5)

Finally, from(5), we find immediately thatu(s) = |a|/√ω2 − b2 and, from

(u′)2

u2 + (v′)2

a2 + b2u2 = 1,

by integration, we find the desired expression forv(s). �

Now if γ̃ is the profile curve of aG-invariant surface inH2 × R with constant Gauss
curvature, then the explicit parametrization ofγ̃ can be obtained by replacing inTheorem
3.3 the corresponding expression of the functionω, according to the value of the Gauss
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curvatureK, as we have described inCorollary 2.3. For example, in the case of theG∗
12-

invariant surfaces ofH2 × R, for some values ofω we have:

(1) If K = 0, choosingω(s) = s, we have the following parametrization for the profile
curve

γ̃(s) = (2
√
s2 + 1,

√
s2 + 1).

(2) If K > 0, choosingω(s) = coss, the corresponding profile curve is

γ̃(s) =
(

2
√

cos2 s+ 1,

√
2 cos2 s

coss
arctan

(
sin√

cos2 s+ 1

))
.

(3) If K < 0, taking the functionω(s) = sinh s, we obtain

γ̃(s) = (2 coshs,0).

4. Invariant surfaces in the Heisenberg groupH3

The three-dimensional Heisenberg spaceH3 is the two-step nilpotent Lie group stan-
dardly represented inGl3(R) by




1 x z+ 1
2xy

0 1 y

0 0 1




with x, y, z ∈ R. Endowed with the left-invariant metric

ds2 = dx2 + dy2 +
(

1

2
y dx− 1

2
x dy + dz

)2

,

(H3, g) has a rich structure, reflected by the fact that its group of isometries is of the
dimension 4, which is the maximal possible for a non-constant curvature 3-manifold. In
particular we have the following proposition.

Proposition 4.1. The Lie algebra of the infinitesimal isometries of the product(H3, ds2)
admits the following bases of Killing vector fields

X1 = ∂

∂x
+ y

2

∂

∂z
, X2 = ∂

∂y
− x

2

∂

∂z
, X3 = ∂

∂z
, X4 = −y ∂

∂x
+ x

∂

∂y
.

According to[3] the one-dimensional subgroups of the isometry groupIsom(H3, ds2)
can be divided in two families:
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(1) The one-parameter subgroups generated by linear combinations

a1X1 + a2X2 + a3X3 + bX4,

of Killing vector fields, withb �= 0. These subgroups are called ofhelicoidal type. If
ai = 0 for i ∈ {1,2,3}, we obtain the group SO(2) generated byX4.

(2) The one-parameter subgroups generated by linear combinations ofX1, X2 andX3,
called oftranslational type.

A surface in the Heisenberg space is calledhelicoidalor translational if it is invariant
under the action of a helicoidal or a translational one-parameter subgroup of isometries
respectively.

To describe (locally) allG-invariant surfaces with constant Gauss curvature of the Heisen-
berg space, whereG is a one-parameter subgroup of isometries, we use the following lemma.

Lemma 4.2 (Figueroa et al.[3]). A surface inH3 which is invariant under the action of a
one-parameter subgroup of isometriesGX generated by a Killing vector fieldX =∑i aiXi
is isometric to a surface invariant under the action of one of the following groups:

G1, G3, G34.

With the same argument as inTheorem 3.3we can give the following local description
of theG-invariant surfaces inH3.

Theorem 4.3. Let γ̃ = (u(s), v(s)) be a curve in the orbit space(H3/G, g̃) parametrized
by arc length which is the profile curve of a G-invariant surface inH3.

• If G = G1, then the orbit space isB = R2 with the orbital metricg̃ = du2 + (dv2/(u2 +
1)) and the profile curve can be parametrized by

u(s) =
√
ω2 − 1, v(s) =

∫ s

s0

√
ω2

[
1 − (ωω′)2

(ω2 − 1)

]
dt.

• If G = G3, then the orbit space isB = R2 with the orbital metricg̃ = du2 + dv2 and,
asω = 1,any curve parametrized by arc length is the profile curve of a flatG3-invariant
vertical cylinder.

• If G = G34, then the orbit space isB = {(u, v) ∈ R2 : u ≥ 0} with the orbital metric
g̃ = du2 + (4u2 dv2/(4u2 + (u2 + 2a)2)) and the profile curve can be parametrized by

u(s) =
√

2
(√

ω2 + 2a+ 1 − a− 1
)
, a ∈ R+,

v(s) =
∫ s

s0

ω

2

√
2(ω2 + 2a+ 1)3/2 − (2a+ 1)ω2 − 4a2 − 6a− 2 − ω′2

(ω2 + 2a+ 1)(
√
ω2 + 2a+ 1 − a− 1)2

dt.
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As a special case, whena = 0, we have theSO(2)-invariant surfaces.

Now if γ̃ is the profile curve of aG-invariant surface inH3 with constant Gauss curvature,
then the explicit parametrization of̃γ can be obtained, as we have done for the invariant
surfaces inH2 × R, by replacing inTheorem 3.3the corresponding expression of the
function ω, according to the value of the Gauss curvatureK, as we have described in
Corollary 2.3.

Remark 4.4. The case of SO(2)-invariant surfaces with constant Gauss curvature was
described explicitly by Caddeo–Piu–Ratto in[2].
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