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Abstract

We give a reduction procedure to determine (locally) the surfaces with constant Gauss curvature
in a three-dimensional manifold which are invariant under the action of a one-parameter subgroup of
the isometry group of the ambient space. We apply this procedure to describe the invariant surfaces
with constant Gauss curvatureliif x R and inHs.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Let (N3, ) be a three-dimensional Riemannian manifold anclée a Killing vector
field onN. ThenX generates a one-parameter subgrGypof the group of isometries of
(N3, g).Forx € N, the isotropy subgrou@, of Gis compactand the quotient spagg/ G
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is diffeomorphic to the orbiG(x) = {gx € N : g € G}. An orbit G(x) is called principal
if there exists an open neighbourhoddc N of x such that for all orbitsG(y), y € U,
the isotropy subgroup&, are conjugate. IV/G is connected, from the Principal Orbit
Theorem[6], the principal orbits are all diffeomorphic and the a&f consisting of points
belonging to principal orbits, is open and densi.iMoreover, the quotient spadg /G x is
a connected differentiable manifold and the quotient magv, — N,/ G x isasubmersion.

Let now f : M? — (N3, g) be an immersion from a surfade? into N and assume
that f(M) C N,. We say thaf is a G x-equivariantimmersion, andf(M) a G x-invariant
surface of\, if there exists an action @ x on M2 such that for any € M2 andg € Gx
we havef(gx) = gf ().

A G x-equivariant immersiorf : M2 — (N3, g) induces onM? a Riemannian metric,
the pull-back metric, denoted kg and called thés x-invariant induced metric

The aim of this paper is to give a local description of thg-equivariant immersions
from a surface into a 3-manifold that induce b#f a metric of constant Gauss curvature.

2. Equivariant geometry of invariant surfaces

Let f: M2 — (N3, g) be aG x-equivariant immersion from a surfadé? into a Rie-
mannian manifold &3, g) and let endowM? with the G x-invariant induced metrig ;.
Assume thatf(M?) c N, and thatN/Gy is connected. Thefiinduces an immersion
f :M/Gx — N,/Gx between the orbit spaces and the spAggGx can be equipped
with a Riemannian metric, thguotient metri¢so that the quotient map: N, — N,/Gx
is a Riemannian submersion.

Following[3] we shall describe the quotient metric of the regular part of the orbit space
N/Gy. It is well known (see, for examplgl]) that N,/ Gx can be locally parametrized
by the invariant functions of the Killing vector fiel®. If {f1, fo} is a complete set of
invariant functions on & y-invariant subset ofv,, then the quotient metric is given by
g= ijzl hiidf; ® df; where (") is the inverse of the matrix;) with entriesh;; =
(V[ V 1)),

We can picture the above construction by the following diagram:

. I ~
(M?%,gp) ——  (N*,9)

l d

M?/Gx —1— (N3/Gx,9)

wherer is a Riemannian submersion.

We now give a local description of th@x-invariant surfaces oN3. Let 7 : (a, b) C
R — (N3/Gy, §) be a curve parametrized by arc length and/le{a, b)) c R — N3be a
lift of 7, such that@(y’) = 7. If we denote byp,, r € (—¢, €), the local flow of the Killing
vector fieldX, then the map

¥ i@ b) x (-6, €) > N3 y(1,r) = ¢ (¥ (1), 1)

defines a parametrize@y-invariant surface.
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Conversely, iff(M?2) is aG x-invariant immersed surface i3, then f defines a curve
in (NE/GX, £) that can be locally parametrized by arc length. The cyrve generally
called theprofile curve.

In the sequel we need the following theorem.

Theorem 2.1 (Caddeo et al[2]). Let g = E dr? + 2F drdr + G dr2 be a Riemannian
metric on a local chartz, ) of a surfaceM? with coefficients EF and G that depend only
ont

(i) If (M?, g) has constant Gauss curvatytben there exists a constaate R such that
(dG /dr)?
EG — F?

(ii) Vice versasuppose thaEg. (2) holds with K and A real constants. Thén all points
whereG’ # 0, the surfaceM? has constant Gauss curvature equal to K

+4KG = A. )

We are now ready to state the main result.

Theorem 2.2. Let f : M? — (N3, g) be aG x-equivariant immersiony : (a,b) C R —
(N3/Gyx, §) a parametrization by arc length of andy a lift of 7.

(i) If the Gx-invariant induced metrig s is of constant Gaussian curvaturg #en the
functiono(r) = || X(y (1))l satisfies the following differential equation

d2
@w(t) + Ko(t) = 0. 3)

(ii) Vice versasuppose thaEg.(3) holds wih K a realconstant. Theyin all points where
d(w?)/dr # 0, the G x-invariant induced metrig » has constant Gauss curvature

Proof. Locally the surfacef(M?) can be parametrized, usiiid), by v(z, ) = ¢,(y(1)).
Thus the pull-back metric can be written @s = E dr? + 2F dt dr + G dr? where

E =g, ¥i) = g(de(y)), dp(v)),  F =gy, ¥r) = g(dp(y), X),

G = g(¥r ¥r) = g(X. X) = o”.
Since ther-coordinate curves are the orbits of the action of the one-parameter group of
isometriesG x, the coefficients of the metric do not dependron

Now, assume thati{?, gr) has constant Gauss curvati¢ethen, fromTheorem 2.1
there exists a constant € R such that

(dG /dt)2
EG — F?

Sincey is the lift of y with respect to the Riemannian submersignwe have that
dr(y;) = 7' and dr(¢,) = 0. Lete be a local unit vector field tangent to the surface and

+4KG = A. (4)
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horizontal with respect ta. Then, since d(y;) = 7 has norm 1 and is a Riemannian
submersiony; can be decomposed as

_ Vr _F
v = g(Yr, ‘/fr)g(wr’ ) +e= Gl/fr +e.

Calculating the norm yields to
EG - F?=G.
Then Eq.(4) can be rewritten as

d 2
(d(:) +4KG? = AG,

which is equivalent, taking into account that= »?, to
o2
@w(t) + Kw(t) = 0.
Conversely, assume that along a cupvéhe functionw(r) = || X(y (7))l satisfies the
differential equation:
2

%w(t) + Kow(t) =0,

for some real constar€. Then there exist a constaAtsuch that the functiolG = w?
satisfies the differential equation:

2
(c:f) +4KG? = AG

and, fromTheorem 2.1lin all points where & /dr # 0, the parametrizatioti(z, r) defines
a parametrized surface with constant Gauss curviture]

By integration of Eq(3) we have the following corollary.
Corollary 2.3. Let f : M? — (N®, g) be aG x-equivariant immersion which induces a
G x-invariant metricg y on M? of constant Gauss curvature K. Then the nas(n) of the
Killing vector field X along a lift of the profile curve:is

e for K = 0given by

o(t) =cit+c2, c1,c2 €R;
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e for K = 1/R? > O given by
) cos(t)+ sin(t) eR;
w(f) =c — c —1), c1,c ;
1 R 2 R 1, €2
e for K = —1/R? < 0 given by
® cosh( ! ) + sinh( ! ) eR
w(f) =c — c —], c1,cC .
1 R 2 R 1, €2

As we shall show in the next section the profile curve af g-invariant surface can
be parametrized as a function ©f Thus, usingCorollary 2.3 we can give the explicit
parametrization of the profile curve.

Remark 2.4. If (N3, g) = (R3, can) is the Euclidean three-dimensional space, then the
Killing vector fields generate either translations or rotations. In the case of translations
the quotient spac®3/Gy is R? with the flat metric andy is constant. Thus, from Eq.

(3), we see that any curve in the quotient space generates a flat right cylinder. In the case
of rotations we can assume, without loss of generality, that the rotation is about a co-
ordinate axis, says. Then the Killing vector field isX = —x2(8/9x1) + x1(8/9x2) and

the quotient space B3/ G x = {(x1, x2, x3) € R3: xo = 0, x1 > 0} with the flat metric. If

7(0) = (u(r), 0, v(r)) € R3/Gy is a arc length parametrized profile ofz-invariant sur-

face, then the norm of restricted to the profile curve is = u(r) and, usingCorollary 2.3

we find the classical explicit parametrization of surfaces of revolution with constant Gauss
curvature (see, for exampj&]).

3. Invariant surfaces in M2 x R

In this section we us&heorem 2.20 describe (locally) allG-invariant surfaces with
constant Gauss curvature of the prodHétx R whereG is a one-parameter subgroup of
the isometries. LeH? = {(x, y) € R2: y > 0} be the half plane model of the hyperbolic
plane and considéifi? x R endowed with the product metric

+ dz2.
y2

ds

Proposition 3.1. The Lie algebra of the infinitesimal isometries of the prod{i&t x
R, ds?) admits the following bases of Killing vector fields

x2—y2 9 N 3 X 3 X B] N 3 PO
= — Xy—, = —), = X— —_—, = —.
2 Ox yay 27 o 3 ox yay 4 0z

Proof. This result comes from a direct integration of the Killing equatigng = 0. O
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Let denote byG; the one-parameter subgroup of isometries generated) dyy G;; the
one-parameter subgroup of isometries generated by linear combinatig@iasuod X ; and
so on. We first note that if the grougsy andGy generated by two Killing vector field$
andY are conjugate (we shall writ€ x ~ Gy) then the respectively invariant surfaces are
congruent, i.e. isometric with respect to an isometry of the ambient space. Therefore, we
can reduce the study of the invariant surfaces by analyzing all the conjugate one-parameter
groups of isometries. Ifb] there is the complete list of the conjugate groups of isometries
in H? x R which gives the following lemma.

Lemma 3.2 (Onnis[5]). Any surface irfH? x R which is invariant under the action of a
one-parameter subgroup of isometr&g, generated by a Killing vector field = 3, ¢, X;,
is isometric to a surface invariant under the action of one of the following groups

G24, Gza, Gip Gioy

whereG7, is the one-parameter group generatedXj, = X1 + (X2)/2 and G3,, is the
one-parameter group generated Ky, and X 4.

Now let G be a one-parameter group of isometries among those descritheaima
3.2and lety = (u(s), v(s)) be a curve parametrized by arc length in the orbit sgaee
(H? x R)/G endowed with the quotient metrig that is such that

§()7', V) = §11M’2 + 2§12u’v’ + §22M12 =1,

where with’ we have denoted the derivative with resped.to

If we denote byw the norm of the Killing vector fielk that generates the one-parameter
group ofisometrie&, we can give the following local description of tBeinvariant surfaces
of H? x R.

Theorem 3.3. Let y = (u(s), v(s)) be a curve in the orbit spacéH? x R/G, §)
parametrized by arc lengtivhich is the profile curve of a G-invariant surface(lfi* x R).
Then

e If G = G4, the orbit space i§l2 and any curve parametrized by arc length is the profile
curve of a flatG4-invariant cylindet

e If G = Gyy, the orbit space i3 = {(u, v) € R? : u > 0} with the orbital metricg =
(du?/u?) + (dv?/(a? 4 b%u?)) and the profile curve can be parametrized by

u(s) = lal/Vw? —b2, a,belR,

s 2.2 ’ 2
v(s):/ Zw21_<2ww2)
so \| @°—b wc—Db
As a special casevhena = 1 andb = 0, we have thé52-invariant surfaces

e |f G = Gaga, thenthe orbitspace 8 = {(u, v) € R? : 0 < u < 7} with the orbital metric
& = (du?/ sin’(u)) + (dv?/(a?® + b? sir’(u))) and the profile curve can be parametrized

dr.
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by

u(s) = arcsin(|a|/v w? — bz) , a,beR,

N alw? (a)a)’)2
= 1- dr.
v(s) /SO \/wz — 2 { (@ — ) —a2—b9) | "
As a special casevhena = 1 andb = 0, we have thérz-invariant surfaces
e If G = G3,,, then the orbit space i = {(u, v) € R? : u > 2} with the orbital metric
& = (du?/(u? — 4)) + [(u? — 4) dv?/((u? + 4(a® — 1)))] and the profile curve can be
parametrized by

u(s) =2vVw?2+1—-a2 ack,

s w2 (we')?
v(s) = /SO \/w2 — {1 - (@2 — ad)(w? 11— a?) dr.

As a special casavhena = 0, we have th&57,-invariant surfaces

Proof. The proof is a direct consequence of the expression of the quotient metric and of
. We shall write down the explicit calculations for thes-invariant surfaces leaving the
other cases to the reader.

The Killing vector field generating the Lie algebra @fy4 is X = a(d/0x) +
b(3/0z), a, b € R. A set of two invariant functions is

u=y>0, v = bx — az.
Thus the orbit space 8 = {(u, v) € R? : 4 > 0} and the orbital metric is

du? dv?

g Gt
§= 2 T 222

Lety = (u(s), v(s)) be a curve parametrized by arc length in the orbit sgadehen the
square of the norm of the Killing vector filelalong a lift of , with respect ta, is

o® = | X|2 = (@® + b?u?) /u’. (5)
Finally, from (5), we find immediately thai(s) = |a|/~/@w? — b2 and, from
() (v)?

=1,
W2 a2+ b2

by integration, we find the desired expression). O

Now if 7 is the profile curve of &-invariant surface ifil? x R with constant Gauss
curvature, then the explicit parametrizationjo€an be obtained by replacing Theorem
3.3 the corresponding expression of the functionaccording to the value of the Gauss
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curvatureK, as we have described @orollary 2.3 For example, in the case of thig,-
invariant surfaces dfi? x R, for some values ab we have:

(1) If K =0, choosingw(s) = s, we have the following parametrization for the profile
curve

7)) = (2Vs2 + 1, V52 4+ 1).

(2) If K > 0, choosingy(s) = coss, the corresponding profile curve is

. ———— V/2c0% s sin

(3) If K < 0, taking the functioru(s) = sinh s, we obtain

y(s) = (2 coshs, 0).

4. Invariant surfaces in the Heisenberg groupgHs

The three-dimensional Heisenberg sp#eeis the two-step nilpotent Lie group stan-
dardly represented i6i3(R) by

1 x z—i—%xy
01 y
0 0 1

with x, y, z € R. Endowed with the left-invariant metric
2 2 2 1 1 ?
ds® = dx“ + dy“ + (Zydx— 2xdy+dz> ,
(Hs, g) has a rich structure, reflected by the fact that its group of isometries is of the
dimension 4, which is the maximal possible for a non-constant curvature 3-manifold. In

particular we have the following proposition.

Proposition 4.1. The Lie algebra of the infinitesimal isometries of the prodii&s, ds?)
admits the following bases of Killing vector fields

y 0
X1=—+=—, = , = .
17 + 20z ady 20z 0z ox + ay

According to[3] the one-dimensional subgroups of the isometry grbap:(Hz, ds?)
can be divided in two families:
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(1) The one-parameter subgroups generated by linear combinations
a1X1+ a2X2 + az3X3 + bXa,

of Killing vector fields, withb = 0. These subgroups are calledhaicoidal type If
a; = 0fori € {1, 2, 3}, we obtain the group SO(2) generatedXy.

(2) The one-parameter subgroups generated by linear combinatioxig, af, and X3,
called oftranslational type

A surface in the Heisenberg space is calteticoidal or translationalif it is invariant
under the action of a helicoidal or a translational one-parameter subgroup of isometries
respectively.

To describe (locally) al-invariant surfaces with constant Gauss curvature of the Heisen-
berg space, whefgis a one-parameter subgroup of isometries, we use the following lemma.

Lemma 4.2 (Figueroa et al[3]). A surface inHz which is invariant under the action of a
one-parameter subgroup of isometri@g generated by a Killing vector fieldl = ", a; X;
is isometric to a surface invariant under the action of one of the following groups

Gi1, Gs, Gz

With the same argument asTieorem 3.3ve can give the following local description
of the G-invariant surfaces iiis.

Theorem 4.3. Lety = (u(s), v(s)) be a curve in the orbit spad@s/ G, g) parametrized
by arc length which is the profile curve of a G-invariant surfacélin

e If G = G1,then the orbit space i8 = R? with the orbital metrig = du? + (dv?/(u? +
1)) and the profile curve can be parametrized by

u(s) = Vo2 — 1, v(s) = /: \/wz [1— (we)? } dr.

(@? —1)

e If G = G3, then the orbit space i = R? with the orbital metricg = du? 4 dv? and,
asw = 1,any curve parametrized by arc length is the profile curve of adlatnvariant
vertical cylinder

e If G = Gay, then the orbit space i = {(u, v) € R? : u > 0} with the orbital metric
§ = du? + (4u? dv?/(4u? + (u? + 24)?)) and the profile curve can be parametrized by

u(s)z\/Z(\/a)2+2a+l—a—1>, aeRT,

) /Sa) 2(@? + 2a + 1)32 — (2a + 1)w? — 4a? — 6a — 2 — w'?
)= | =
50 2 (W2 +2a+1DWw2+2a+1—a—1)?

dr.
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As a special casevhena = 0, we have th&O(2)invariant surfaces

Now if 7 is the profile curve of &-invariant surface ifil3 with constant Gauss curvature,
then the explicit parametrization ¢f can be obtained, as we have done for the invariant
surfaces inH? x R, by replacing inTheorem 3.3the corresponding expression of the
function w, according to the value of the Gauss curvatfteas we have described in
Corollary 2.3

Remark 4.4. The case of SO(2)-invariant surfaces with constant Gauss curvature was
described explicitly by Caddeo—Piu—Rattq2j.
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